Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
Mol Biol Cell ; 35(5): ar62, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507240

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98. We show that Rae1 alone is not necessary to support p-STAT1 import or nuclear export of poly(A) RNA. Moreover, the loss of Rae1 suppresses the transport inhibitory activity of Orf6. We propose that the Rae1/Nup98 complex strategically positions Orf6 within the NPC where it alters FG-Nup interactions and their ability to support nuclear transport. In addition, we show that Rae1 is required for normal viral protein production during SARS-CoV-2 infection presumably through its role in supporting Orf6 function.


Assuntos
Transporte Ativo do Núcleo Celular , COVID-19 , Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Interferons/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
2.
Arch Biochem Biophys ; 754: 109896, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417691

RESUMO

AIMS: The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS: RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS: The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS: RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Gástricas , Animais , Humanos , Camundongos , Caderinas/genética , Caderinas/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Vimentina/genética , Vimentina/metabolismo
3.
Cell Rep ; 43(1): 113593, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38113140

RESUMO

Nuclear mRNA export via nuclear pore complexes is an essential step in eukaryotic gene expression. Although factors involved in mRNA transport have been characterized, a comprehensive mechanistic understanding of this process and its regulation is lacking. Here, we use single-RNA imaging in yeast to show that cells use mRNA retention to control mRNA export during stress. We demonstrate that, upon glucose withdrawal, the essential RNA-binding factor Nab2 forms RNA-dependent condensate-like structures in the nucleus. This coincides with a reduced abundance of the DEAD-box ATPase Dbp5 at the nuclear pore. Depleting Dbp5, and consequently blocking mRNA export, is necessary and sufficient to trigger Nab2 condensation. The state of Nab2 condensation influences the extent of nuclear mRNA accumulation and can be recapitulated in vitro, where Nab2 forms RNA-dependent liquid droplets. We hypothesize that cells use condensation to regulate mRNA export and control gene expression during stress.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Saccharomyces cerevisiae , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Sci Rep ; 13(1): 21723, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066085

RESUMO

The contact inhibition of proliferation (CIP) denotes the cell density-dependent inhibition of growth, and the loss of CIP represents a hallmark of cancer. However, the mechanism by which CIP regulates gene expression remains poorly understood. Chromatin is a highly complex structure consisting of DNA, histones, and trans-acting factors (TAFs). The binding of TAF proteins to specific chromosomal loci regulates gene expression. Therefore, profiling chromatin is crucial for gaining insight into the gene expression mechanism of CIP. In this study, using modified proteomics of TAFs bound to DNA, we identified a protein that shuttles between the nucleus and cytosol in a cell density-dependent manner. We identified TIPARP, PTGES3, CBFB, and SMAD4 as cell density-dependent nucleocytoplasmic shuttling proteins. In low-density cells, these proteins predominantly reside in the nucleus; however, upon reaching high density, they relocate to the cytosol. Given their established roles in gene regulation, our findings propose their involvement as CIP-dependent TAFs. We also identified and characterized potential open chromatin regions sensitive to changes in cell density. These findings provide insights into the modulation of chromatin structure by CIP.


Assuntos
Núcleo Celular , Cromatina , Cromatina/genética , Cromatina/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Transativadores/metabolismo , DNA/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Contagem de Células
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834012

RESUMO

Triple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive. Stable cell lines with ETHE1 overexpression or knockdown were constructed to explore the biological functions of ETHE1 during TNBC progression in vitro and in vivo. Mass spectrometry was used to analyze the molecular mechanism through which ETHE1 functions in TNBC progression. ETHE1 had no impact on TNBC cell proliferation and xenograft tumor growth but promoted TNBC cell migration and invasion in vitro and lung metastasis in vivo. The effect of ETHE1 on TNBC cell migratory potential was independent of its enzymatic activity. Mechanistic investigations revealed that ETHE1 interacted with eIF2α and enhanced its phosphorylation by promoting the interaction between eIF2α and GCN2. Phosphorylated eIF2α in turn upregulated the expression of ATF4, a transcriptional activator of genes involved in cell migration and tumor metastasis. Notably, inhibition of eIF2α phosphorylation through ISRIB or ATF4 knockdown partially abolished the tumor-promoting effect of ETHE1 overexpression. ETHE1 has a functional and mechanistic role in TNBC metastasis and offers a new therapeutic strategy for targeting ETHE1-propelled TNBC using ISRIB.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo
6.
Adv Biol Regul ; 90: 100990, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801910

RESUMO

Gle1 regulates gene expression at multiple steps from transcription to mRNA export to translation under stressed and non-stressed conditions. To better understand Gle1 function in stressed human cells, specific antibodies were generated that recognized the phosphorylation of threonine residue 102 (T102) in Gle1. A series of in vitro kinase assays indicated that T102 phosphorylation serves as a priming event for further phosphorylation in Gle1's N-terminal low complexity cluster. Indirect immunofluorescence microscopy with the anti-Gle1-pT102 antibodies revealed that basally phosphorylated Gle1 was pre-dominantly nuclear with punctate distribution; however, under sodium arsenite-induced stress, more cytoplasmic localization was detected. Immunoprecipitation with the anti-Gle1-pT102 antibody resulted in co-isolation of Gle1-pT102 with the DEAD-box protein DDX1 in a phosphatase sensitive manner. This suggested Gle1 phosphorylation might be linked to its role in regulating DDX1 during transcription termination. Notably, whereas the total Gle1-DDX1 association was decreased when Gle1 nucleocytoplasmic shuttling was disrupted, co-isolation of Gle1-pT102 and DDX1 increased under the same conditions. Taken together, these studies demonstrated that Gle1 phosphorylation impacts its cellular distribution and potentially drives nuclear Gle1 functions in transcription termination. We propose a model wherein phosphorylation of Gle1 either reduces its nucleocytoplasmic shuttling capacity or increases its binding affinity with nuclear interaction partners.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosforilação , Núcleo Celular/metabolismo
7.
Dev Biol ; 503: 43-52, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597605

RESUMO

Transmembrane p24 trafficking protein 10 (TMED10) is a conserved vesicle trafficking protein. It is dysregulated in Alzheimer disease and plays a pivotal role in the pathogenesis of Alzheimer disease. In addition to the brain, TMED10 is highly expressed in the exocrine pancreas; however, its biological functions and underlying mechanisms remain largely unknown. We studied reduced Tmed10 in zebrafish embryos by morpholino oligonucleotide knockdown and CRISPR-Cas9 mutagenesis. Tmed10-deficient embryos showed extensive loss of acinar mass and impaired acinar differentiation. TMED10 has been reported to have an inhibitory effect on γ-secretase. As one of the substrates of γ-secretase, membrane-bound ß-catenin was significantly reduced in Tmed10-deficient embryos. Increased γ-secretase activity in wild-type embryos resulted in a phenotype similar to that of tmed10 mutants. And the mutant phenotype could be rescued by treatment with the γ-secretase inhibitor, N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester (DAPT). In addition, the reduced membrane-bound ß-catenin was accompanied with up-regulated ß-catenin target genes in Tmed10-deficient embryos. Overexpression of ß-catenin signaling inhibitor Dickkopf-1 (DKK-1) could rescue the exocrine pancreas defects. Taken together, our study reveals that Tmed10 regulates exocrine pancreatic differentiation through γ-secretase. Reduced membrane-bound ß-catenin, accompanied with hyperactivation of ß-catenin signaling, is an important cause of exocrine pancreas defects in Tmed10-deficient embryos. Our study reaffirms the importance of appropriate ß-catenin signaling in exocrine pancreas development. These findings may provide a theoretical basis for the development of treatment strategies for TMED10-related diseases.


Assuntos
Doença de Alzheimer , Proteínas de Transporte Nucleocitoplasmático , Pâncreas Exócrino , Animais , Secretases da Proteína Precursora do Amiloide/genética , beta Catenina/genética , Larva , Pâncreas Exócrino/embriologia , Pâncreas Exócrino/metabolismo , Peixe-Zebra/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo
8.
Biol Chem ; 404(8-9): 845-850, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436777

RESUMO

Cell viability largely depends on the surveillance of mRNA export and translation. Upon pre-mRNA processing and nuclear quality control, mature mRNAs are exported into the cytoplasm via Mex67-Mtr2 attachment. At the cytoplasmic site of the nuclear pore complex, the export receptor is displaced by the action of the DEAD-box RNA helicase Dbp5. Subsequent quality control of the open reading frame requires translation. Our studies suggest an involvement of Dbp5 in cytoplasmic no-go-and non-stop decay. Most importantly, we have also identified a key function for Dbp5 in translation termination, which identifies this helicase as a master regulator of mRNA expression.


Assuntos
Proteínas de Transporte Nucleocitoplasmático , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
9.
Commun Biol ; 6(1): 664, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353594

RESUMO

Self-renewing somatic tissues rely on progenitors to support the continuous tissue regeneration. The gene regulatory network maintaining progenitor function remains incompletely understood. Here we show that NUP98 and RAE1 are highly expressed in epidermal progenitors, forming a separate complex in the nucleoplasm. Reduction of NUP98 or RAE1 abolishes progenitors' regenerative capacity, inhibiting proliferation and inducing premature terminal differentiation. Mechanistically, NUP98 binds on chromatin near the transcription start sites of key epigenetic regulators (such as DNMT1, UHRF1 and EZH2) and sustains their expression in progenitors. NUP98's chromatin binding sites are co-occupied by HDAC1. HDAC inhibition diminishes NUP98's chromatin binding and dysregulates NUP98 and RAE1's target gene expression. Interestingly, HDAC inhibition further induces NUP98 and RAE1 to localize interdependently to the nucleolus. These findings identified a pathway in progenitor maintenance, where HDAC activity directs the high levels of NUP98 and RAE1 to directly control key epigenetic regulators, escaping from nucleolar aggregation.


Assuntos
Cromatina , Proteínas de Transporte Nucleocitoplasmático , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Cromatina/genética , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Sítios de Ligação
10.
Methods Mol Biol ; 2666: 115-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166661

RESUMO

tRNAs are small noncoding RNAs that are predominantly known for their roles in protein synthesis and also participate in numerous other functions ranging from retroviral replication to apoptosis. In eukaryotic cells, all tRNAs move bidirectionally, shuttling between the nucleus and the cytoplasm. Bidirectional nuclear-cytoplasmic tRNA trafficking requires a complex set of conserved proteins. Here, we describe an in vivo biochemical methodology in Saccharomyces cerevisiae to assess the ability of proteins implicated in tRNA nuclear export to form nuclear export complexes with tRNAs. This method employs tagged putative tRNA nuclear exporter proteins and co-immunoprecipitation of tRNA-exporter complexes using antibody-conjugated magnetic beads. Because the interaction between nuclear exporters and tRNAs may be transient, this methodology employs strategies to effectively trap tRNA-protein complexes in vivo. This pull-down method can be used to verify and characterize candidate proteins and their potential interactors implicated in tRNA nuclear-cytoplasmic trafficking.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA de Transferência/genética , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo
11.
Cell Rep ; 42(3): 112242, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36924490

RESUMO

Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.


Assuntos
Células-Tronco Neurais , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Corpos de Processamento , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
12.
Mol Cell ; 83(5): 759-769.e7, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736315

RESUMO

The AAA+ ATPase Cdc48 utilizes the cofactor Ufd1/Npl4 to bind and thread polyubiquitinated substrates for their extraction from complexes or membranes and often for subsequent proteasomal degradation. Previous studies indicated that Cdc48 engages polyubiquitin chains through the Npl4-mediated unfolding of an initiator ubiquitin; yet, the underlying principles remain largely unknown. Using FRET-based assays, we revealed the mechanisms and kinetics of ubiquitin unfolding, insertion into the ATPase, and unfolding of the ubiquitin-attached substrate. We found that Cdc48 uses Ufd1's UT3 domain to bind a K48-linked ubiquitin on the initiator's proximal side of the chain, thereby directing the initiator toward rapid unfolding by Npl4 and engagement by Cdc48. Ubiquitins on the initiator's distal side increase substrate affinity and facilitate unfolding but impede substrate release from Cdc48-Ufd1/Npl4 in the absence of additional cofactors. Our findings explain how Cdc48-UN efficiently processes substrates with K48-linked chains of 4-6 ubiquitins, which represent most cellular polyubiquitinated proteins.


Assuntos
Poliubiquitina , Proteínas de Saccharomyces cerevisiae , Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteína com Valosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas de Ciclo Celular/metabolismo
13.
Redox Biol ; 60: 102629, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36780769

RESUMO

Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine ß-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1ß and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1ß and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.


Assuntos
Estenose da Valva Aórtica , Calcinose , Sulfeto de Hidrogênio , Humanos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Sulfeto de Hidrogênio/metabolismo , Calcinose/metabolismo , Calcinose/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
14.
Nucleic Acids Res ; 51(3): 1393-1408, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36620872

RESUMO

In eukaryotic cells, various classes of RNAs are exported to the cytoplasm by class-specific factors. Accumulating evidence has shown that export factors affect the fate of RNA, demonstrating the importance of proper RNA classification upon export. We previously reported that RNA polymerase II transcripts were classified after synthesis depending on their length, and identified heterogeneous nuclear ribonucleoprotein (hnRNP) C as the key classification factor. HnRNP C inhibits the recruitment of PHAX, an adapter protein for spliceosomal U snRNA export, to long transcripts, navigating these RNAs to the mRNA export pathway. However, the mechanisms by which hnRNP C inhibits PHAX recruitment to mRNA remain unknown. We showed that the cap-binding complex, a bridging factor between m7G-capped RNA and PHAX, directly interacted with hnRNP C on mRNA. Additionally, we revealed that the tetramer-forming activity of hnRNP C and its strong RNA-binding activity were crucial for the inhibition of PHAX binding to longer RNAs. These results suggest that mRNA is wrapped around the hnRNP C tetramer without a gap from the cap, thereby impeding the recruitment of PHAX. The results obtained on the mode of length-specific RNA classification by the hnRNP C tetramer will provide mechanistic insights into hnRNP C-mediated RNA biogenesis.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo C , RNA Polimerase II , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , Células Eucarióticas/metabolismo
15.
Nat Commun ; 13(1): 5881, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202822

RESUMO

The changes occurring in mRNA organization during nucleo-cytoplasmic transport and export, are not well understood. Moreover, directionality of mRNA passage through the nuclear pore complex (NPC) has not been examined within individual NPCs. Here we find that an mRNP is compact during nucleoplasmic travels compared to a more open structure after transcription and at the nuclear periphery. Compaction levels of nuclear transcripts can be modulated by varying levels of SR proteins and by changing genome organization. Nuclear mRNPs are mostly rod-shaped with distant 5'/3'-ends, although for some, the ends are in proximity. The latter is more abundant in the cytoplasm and can be modified by translation inhibition. mRNAs and lncRNAs exiting the NPC exhibit predominant 5'-first export. In some cases, several adjacent NPCs are engaged in export of the same mRNA suggesting 'gene gating'. Altogether, we show that the mRNP is a flexible structure during travels, with 5'-directionality during export.


Assuntos
Poro Nuclear , RNA Longo não Codificante , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de RNA , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Dev Cell ; 57(19): 2334-2346.e8, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174556

RESUMO

To promote infections, pathogens exploit host cell machineries such as structural elements of the plasma membrane. Studying these interactions and identifying molecular players are ideal for gaining insights into the fundamental biology of the host cell. Here, we used the anthrax toxin to screen a library of 1,500 regulatory, cell-surface, and membrane trafficking genes for their involvement in the intoxication process. We found that endoplasmic reticulum (ER)-Golgi-localized proteins TMED2 and TMED10 are required for toxin oligomerization at the plasma membrane of human cells, an essential step dependent on localization to cholesterol-rich lipid nanodomains. Biochemical, morphological, and mechanistic analyses showed that TMED2 and TMED10 are essential components of a supercomplex that operates the exchange of both cholesterol and ceramides at ER-Golgi membrane contact sites. Overall, this study of anthrax intoxication led to the discovery that lipid compositional remodeling at ER-Golgi interfaces fully controls the formation of functional membrane nanodomains at the cell surface.


Assuntos
Retículo Endoplasmático , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Vesicular , Membrana Celular/metabolismo , Ceramidas/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo
17.
Nucleic Acids Res ; 50(17): 10140-10152, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36099418

RESUMO

tRNAs that are transcribed in the nucleus are exported to the cytoplasm to perform their iterative essential function in translation. However, the complex set of tRNA post-transcriptional processing and subcellular trafficking steps are not completely understood. In particular, proteins involved in tRNA nuclear export remain unknown since the canonical tRNA nuclear exportin, Los1/Exportin-t, is unessential in all tested organisms. We previously reported that budding yeast Mex67-Mtr2, a mRNA nuclear exporter, co-functions with Los1 in tRNA nuclear export. Here we employed in vivo co-purification of tRNAs with endogenously expressed nuclear exporters to document that Crm1 also is a bona fide tRNA nuclear exporter. We document that Los1, Mex67-Mtr2 and Crm1 possess individual tRNA preferences for forming nuclear export complexes with members of the 10 families of intron-containing pre-tRNAs. Remarkably, Mex67-Mtr2, but not Los1 or Crm1, is error-prone, delivering tRNAs to the cytoplasm prior to 5' leader removal. tRNA retrograde nuclear import functions to monitor the aberrant leader-containing spliced tRNAs, returning them to the nucleus where they are degraded by 3' to 5' exonucleases. Overall, our work identifies a new tRNA nuclear exporter, uncovers exporter preferences for specific tRNA families, and documents contribution of tRNA nuclear import to tRNA quality control.


Assuntos
RNA de Transferência , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Exonucleases/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nat Commun ; 13(1): 4782, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970938

RESUMO

The emergence of heavily mutated SARS-CoV-2 variants of concern (VOCs) place the international community on high alert. In addition to numerous mutations that map in the spike protein of VOCs, expression of the viral accessory proteins ORF6 and ORF9b also elevate; both are potent interferon antagonists. Here, we present the crystal structures of Rae1-Nup98 in complex with the C-terminal tails (CTT) of SARS-CoV-2 and SARS-CoV ORF6 to 2.85 Å and 2.39 Å resolution, respectively. An invariant methionine (M) 58 residue of ORF6 CTT extends its side chain into a hydrophobic cavity in the Rae1 mRNA binding groove, resembling a bolt-fitting-hole; acidic residues flanking M58 form salt-bridges with Rae1. Our mutagenesis studies identify key residues of ORF6 important for its interaction with Rae1-Nup98 in vitro and in cells, of which M58 is irreplaceable. Furthermore, we show that ORF6-mediated blockade of mRNA and STAT1 nucleocytoplasmic transport correlate with the binding affinity between ORF6 and Rae1-Nup98. Finally, binding of ORF6 to Rae1-Nup98 is linked to ORF6-induced interferon antagonism. Taken together, this study reveals the molecular basis for the antagonistic function of Sarbecovirus ORF6, and implies a strategy of using ORF6 CTT-derived peptides for immunosuppressive drug development.


Assuntos
Transporte Ativo do Núcleo Celular , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Proteínas Virais , Interferons/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas Virais/química
19.
Genes Cells ; 27(10): 621-628, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35950937

RESUMO

TAP is a general mRNA export receptor and is highly conserved among eukaryotes. The nematode Caenorhabditis elegans has another TAP-like protein, NXF-2, but little is known about its function. In this study, we show that NXF-2 is specifically expressed in germ cells and forms a novel granular structure that is different from that of P granules and that NXF-2 granules are anchored to the nuclear periphery in the mitotic region of the hermaphrodite gonad. In contrast, NXF-2 granules are released within the whole cytoplasm in the meiotic region, where the feminization gene tra-2 starts to function. Both inhibition of XPO-1 (an ortholog of the export receptor CRM1) and mutation of the nuclear export signal of NXF-2 caused the release of NXF-2 granules from the nuclear periphery, indicating that anchoring of NXF-2 granules depends on XPO-1 function. Moreover, inhibition of NXF-2 resulted in a substantial nuclear accumulation of the reporter mRNA carrying the tra-2 3'UTR. These results suggest that, together with XPO-1, NXF-2 exports and anchors tra-2 mRNA to the nuclear periphery to avoid precocious translation until the germ cells reach the meiotic region, thereby contributing to the regulation of tra-2 mRNA expression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regiões 3' não Traduzidas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Células Germinativas/metabolismo , Proteínas de Membrana/metabolismo , Sinais de Exportação Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
J Virol ; 96(18): e0090022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36040180

RESUMO

Many negative-sense RNA viruses, including the highly pathogenic Ebola virus (EBOV), use cytoplasmic inclusion bodies (IBs) for viral RNA synthesis. However, it remains unclear how viral mRNAs are exported from these IBs for subsequent translation. We recently demonstrated that the nuclear RNA export factor 1 (NXF1) is involved in a late step in viral protein expression, i.e., downstream of viral mRNA transcription, and proposed it to be involved in this mRNA export process. We now provide further evidence for this function by showing that NXF1 is not required for translation of viral mRNAs, thus pinpointing its function to a step between mRNA transcription and translation. We further show that RNA binding of both NXF1 and EBOV NP is necessary for export of NXF1 from IBs, supporting a model in which NP hands viral mRNA over to NXF1 for export. Mapping of NP-NXF1 interactions allowed refinement of this model, revealing two separate interaction sites, one of them directly involving the RNA binding cleft of NP, even though these interactions are RNA-independent. Immunofluorescence analyses demonstrated that individual NXF1 domains are sufficient for its recruitment into IBs, and complementation assays helped to define NXF1 domains important for its function in the EBOV life cycle. Finally, we show that NXF1 is also required for protein expression of other viruses that replicate in cytoplasmic IBs, including Lloviu and Junín virus. These data suggest a role for NXF1 in viral mRNA export from IBs for various viruses, making it a potential target for broadly active antivirals. IMPORTANCE Filoviruses such as the Ebola virus (EBOV) cause severe hemorrhagic fevers with high case fatality rates and limited treatment options. The identification of virus-host cell interactions shared among several viruses would represent promising targets for the development of broadly active antivirals. In this study, we reveal the mechanistic details of how EBOV usurps the nuclear RNA export factor 1 (NXF1) to export viral mRNAs from viral inclusion bodies (IBs). We further show that NXF1 is not only required for the EBOV life cycle but also necessary for other viruses known to replicate in cytoplasmic IBs, including the filovirus Lloviu virus and the highly pathogenic arenavirus Junín virus. This suggests NXF1 as a promising target for the development of broadly active antivirals.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Proteínas de Transporte Nucleocitoplasmático , RNA Viral , Proteínas de Ligação a RNA , Antivirais , Ebolavirus/genética , Ebolavirus/metabolismo , Humanos , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/virologia , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...